Local Saxon Seismic Network and SeisComP3 – small events and first experiences

${\sf S. \ Funke^{1,2} \quad M. \ Korn^1 \quad S. \ Wendt^1}$

¹Universität Leipzig

²Technische Universität Bergakademie Freiberg

SeisComP3 User Group meeting Potsdam 16.-18.1.2013

Disposition

• region of low seismicity, swarm earthquakes

- southeastern Germany, western Czech Republic
- 300 km south of Potsdam
- every year a few felt earthquakes
- last swarms: a few 1000 events, max. M=3.9
- detection threshold below $M{=}0.0$
- event list 2012: 975 events
- event list 2013: actual 85 events
- goal for automatic detection: every potentially felt event, detection threshold below M=2.0

- region of low seismicity, swarm earthquakes
- southeastern Germany, western Czech Republic
- 300 km south of Potsdam
- every year a few felt earthquakes
- last swarms: a few 1000 events, max. M=3.9
- detection threshold below $M{=}0.0$
- event list 2012: 975 events
- event list 2013: actual 85 events
- goal for automatic detection: every potentially felt event, detection threshold below M=2.0

- region of low seismicity, swarm earthquakes
- southeastern Germany, western Czech Republic
- 300 km south of Potsdam
- every year a few felt earthquakes
- last swarms: a few 1000 events, max. M=3.9
- detection threshold below $M{=}0.0$
- event list 2012: 975 events
- event list 2013: actual 85 events
- goal for automatic detection: every potentially felt event, detection threshold below M=2.0

- region of low seismicity, swarm earthquakes
- southeastern Germany, western Czech Republic
- 300 km south of Potsdam
- every year a few felt earthquakes
- last swarms: a few 1000 events, max. M=3.9
- detection threshold below $M{=}0.0$
- event list 2012: 975 events
- event list 2013: actual 85 events
- goal for automatic detection: every potentially felt event, detection threshold below M=2.0

- region of low seismicity, swarm earthquakes
- southeastern Germany, western Czech Republic
- 300 km south of Potsdam
- every year a few felt earthquakes
- last swarms: a few 1000 events, max. M=3.9
- detection threshold below $M{=}0.0$
- event list 2012: 975 events
- event list 2013: actual 85 events
- goal for automatic detection: every potentially felt event, detection threshold below M=2.0

- region of low seismicity, swarm earthquakes
- southeastern Germany, western Czech Republic
- 300 km south of Potsdam
- every year a few felt earthquakes
- last swarms: a few 1000 events, max. M=3.9
- detection threshold below $M{=}0.0$
- event list 2012: 975 events
- event list 2013: actual 85 events
- goal for automatic detection: every potentially felt event, detection threshold below M=2.0

- region of low seismicity, swarm earthquakes
- southeastern Germany, western Czech Republic
- 300 km south of Potsdam
- every year a few felt earthquakes
- last swarms: a few 1000 events, max. M=3.9
- detection threshold below M=0.0
- event list 2012: 975 events
- event list 2013: actual 85 events
- \bullet goal for automatic detection: every potentially felt event, detection threshold below M=2.0

- region of low seismicity, swarm earthquakes
- southeastern Germany, western Czech Republic
- 300 km south of Potsdam
- every year a few felt earthquakes
- last swarms: a few 1000 events, max. M=3.9
- detection threshold below $M{=}0.0$
- event list 2012: 975 events
- event list 2013: actual 85 events
- goal for automatic detection: every potentially felt event, detection threshold below M=2.0

- region of low seismicity, swarm earthquakes
- southeastern Germany, western Czech Republic
- 300 km south of Potsdam
- every year a few felt earthquakes
- last swarms: a few 1000 events, max. M=3.9
- detection threshold below M=0.0
- event list 2012: 975 events
- event list 2013: actual 85 events
- goal for automatic detection: every potentially felt event, detection threshold below M=2.0

Jan. 2012 - Jan. 2013

Jan. 2012 - Jan. 2013

January 2013: 42 Online Stations "Central Germany and neighbourhood"

- SeedLink, near real time
- delayed access on 5 stations:
 - ISDN-dial-up (every 10 minutes): 5xx

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

42 Online Stations "Central Germany and neighbourhood"

SeedLink, near real time

• delayed access on 5 stations:

• offline: 1x

ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

January 2013:

- SeedLink, near real time
- delayed access on 5 stations:
 - offline: 1x
 - ISDN-dial-up (every 10 minutes): 5x

Saxon Network	11	stations
Thuringian Network	12	
German Regional Network	9	
Geofon (local)	2	
Bavarian Network	4	
Czech Regional Network	4	
Geofon (worldwide)	ca. 60	

installed by Gempa

- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)

• all of them found by the automatic system

- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

- installed by Gempa
- testing since November 2012
- two detection piplines: local and worldwide
- first success: 24.11.2012 14:15:43 Altenburg M=1.8
- actual swarm: 11 events, magnitudes from M=0.7 to M=2.4 (manual analysis)
- all of them found by the automatic system
- alerts by e-mail, most of them induced events
- open questions, next steps
 - identification (and suppression) of induced events like quarry blasts
 - extend successes to whole region
 - NonLinLoc
 - server to send SMS
 - avoiding 'splitted' events
 - GUI's on separated machines

SeisComP3 live

• routine analysis Collm observatory CLL

- SeisComP3 scolv (M=2.4 1.1.2013 18:20)
- SeisComP3 scolv (M=0.9 1.1.2013 18:10)

SeisComP3 live

- routine analysis Collm observatory CLL
- SeisComP3 scolv (M=2.4 1.1.2013 18:20)
- SeisComP3 scolv (M=0.9 1.1.2013 18:10)

SeisComP3 live

- routine analysis Collm observatory CLL
- SeisComP3 scolv (M=2.4 1.1.2013 18:20)
- SeisComP3 scolv (M=0.9 1.1.2013 18:10)

Thanks ...

- ... to Potsdam people and all the developers for the great software!
- ... to all the connected networks providing the data!
- ... to local Saxon Authorities for founding the network!
- ... to you for your interest!

Thanks ...

- ... to Potsdam people and all the developers for the great software!
- ... to all the connected networks providing the data!
- ... to local Saxon Authorities for founding the network!
- ... to you for your interest!

Thanks ...

- ... to Potsdam people and all the developers for the great software!
- ... to all the connected networks providing the data!
- ... to local Saxon Authorities for founding the network!

• ... to you for your interest!

Thanks ...

- ... to Potsdam people and all the developers for the great software!
- ... to all the connected networks providing the data!
- ... to local Saxon Authorities for founding the network!
- ... to you for your interest!